Answer:
Explanation:
ignoring air resistance, the kinetic energy at water impact will equal the potential energy converted
½mv² = mgh
v = √(2gh)
v = √(2(9.81)2.1) = 6.4188... m/s
after impact, an impulse will result in a change of momentum.
There is a downward impulse due to gravity equal to the weight of the stone and an upward average force due to water resistance and buoyancy force.
FΔt = mΔv
(F - mg)Δt = m(vf - vi)
(F - mg) = m(vf - vi)/Δt
F = m(vf - vi)/Δt + mg
F = m((vf - vi)/Δt + g)
F = 1.05(((½(-6.4188) - -6.4188)/ 1.83) + 9.81)
F = 12.14198...
F = 12.1 N
Inelastic.
If it was elastic, they'd bump right off each other. But since they've been locked, or stuck together, this is inelastic.
If the force were constant or increasing, we could guess that the speed of the sardines is increasing. Since the force is decreasing but staying in contact with the can, we know that the can is slowing down, so there must be friction involved.
Work is the integral of (force x distance) over the distance, which is just the area under the distance/force graph.
The integral of exp(-8x) dx that we need is (-1/8)exp(-8x) evaluated from 0.47 to 1.20 .
I get 0.00291 of a Joule ... seems like a very suspicious solution, but for an exponential integral at a cost of 5 measly points, what can you expect.
On the other hand, it's not really too unreasonable. The force is only 0.023 Newton at the beginning, and 0.000067 newton at the end, and the distance is only about 0.7 meter, so there certainly isn't a lot of work going on.
The main question we're left with after all of this is: Why sardines ? ?
Answer:
141.56 N.
Explanation:
Data given:
Weight of the box= 200.2 N
Angle with the horizontal= 37.1°
Solution;
Gravitational force on the box, = weight of the box
= 200.2 N
Component of gravitational force along plane = ( ∅ )
= W * (sin∅)
= (200.1) * sin (37.1°)
= 141.56 N
Answer:
<h3>The answer is 15 N</h3>
Explanation:
The force acting on an object can be found by using the formula
<h3>Force = mass × acceleration</h3>
From the question
mass = 50 g = 0.05 kg
acceleration = 300 m/s²
We have
force = 0.05 × 300
We have the final answer as
<h3>15 N</h3>
Hope this helps you