Answer: -
IE 1 for X = 801
Here X is told to be in the third period.
So n = 3 for X.
For 1st ionization energy the expression is
IE1 = 13.6 x Z ^2 / n^2
Where Z =atomic number.
Thus Z =( n^2 x IE 1 / 13.6)^(1/2)
Z = ( 3^2 x 801 / 13.6 )^ (1/2)
= 23
Number of electrons = Z = 23
Nearest noble gas = Argon
Argon atomic number = 18
Number of extra electrons = 23 – 18 = 5
a) Electronic Configuration= [Ar] 3d34s2
We know that more the value of atomic radii, lower the force of attraction on the electrons by the nucleus and thus lower the first ionization energy.
So more the first ionization energy, less is the atomic radius.
X has more IE1 than Y.
b) So the atomic radius of X is lesser than that of Y.
c) After the first ionization, the atom is no longer electrically neutral. There is an extra proton in the atom.
Due to this the remaining electrons are more strongly pulled inside than before ionization. Hence after ionization, the radii of Y decreases.
Answer:
60 V
Explanation:
From;
Vs/Vp = Ns/Np
Where;
Vs = voltage in the secondary coil = 6V
Vp = voltage in the primary coil= ??
Ns = number of turns in the secondary coil = 9
Np= number of turns in the primary coil = 90
6/Vp = 9/90
Vp= 90 * 6/9
Vp= 60 V
The single most important chemical weathering agent is Carbon dioxide.
Weathering refers to the process that change the physical and chemical character of rock at or near the surface. Weathering has a dramatic impact on the composition of Earth's atmosphere. Chemical weathering removes carbon dioxide from the atmosphere, allowing it to be transformed into limestone and stored in the crust. Without chemical weathering, the elevated levels of carbon dioxide in the atmosphere would have long made Earth too hot to sustain life.
Answer:
4 moles
Explanation:
From the equation 1 mole of C6H1206 produces 6 moles of CO2.
Therefore the answer is 24/6 = 4 moles of C6H1206.
Answer:
Isotopes – caused by varying numbers of neutrons in an element – have many practical uses in our society. ... In geology and archaeology, radioactive isotopes are used to determine the age of a sample while hydrologists can use isotope signatures to distinguish between different groundwater types.
Explanation:
Google. It's a magical place.