Well knowing that the terminal arm of the standard position angle is in quadrant 2, we can determine the reference angle, in quadrant 2, by simply taking the difference between 180 and whatever the angle is.
So ø reference = 180 - ø in standard position.
Regardless, the reference angle is in quadrant 2, we need to then label the sides of the reference triangle based on the opposite and hypotenuse.
Solve for adjacent side using Pythagoras theorem.
A^2 = C^2 - B^2
A^2 = 3^2 - 2^2
A^2 = 9 - 4
A^2 =5
A = sq root of 5.
Then write the cos ratio using the new side.
Cos ø =✔️5/3. Place a negative in front of cos ø as cos is negative in second quadrant.
Answer:
Questions 1 and 3 already answered
<h3>Q2</h3>
<u>Angles 1 and 3 are corresponding angles and therefore have same value:</u>
Answer:
Step-by-step explanation:
a) f(x) = x² y f(x) = (x+1)²-4 tienen la misma forma y orientación.
b) f(x) = x² se encuentra debajo y a la izquierda de f(x) = (x+1)²-4.
c) En la función f(x) = (x + 1)²-4 el vértice tiene un desplazamiento horizontal, 1 unidad hacia la izquierda.
d) el vértice de la función f(x) = (x + 1)²-4 está desplazado verticalmente, 4 unidades hacia abajo.
Exact form is 25/2
Decimal form is 12.5
Mixed number form is 12 1/2