I’m just here to share positive
You got this!!
I believe in you:)
The number of zeros of the quadratic functions, considering their discriminant, is given as follows:
- discriminant = 0: 1 Real number solution.
- discriminant = -36: 0 Real number solutions.
- discriminant = 3: 2 Real number solutions.
- discriminant = 2: 2 Real number solutions.
- discriminant = 100: 2 Real number solutions.
- discriminant = -4: 0 Real number solutions.
<h3>What is the discriminant of a quadratic equation and how does it influence the solutions?</h3>
A quadratic equation is modeled by:
The discriminant is:
The solutions are as follows:
- If , it has 2 real solutions.
- If , it has 1 real solutions.
- If , it has 0 real solutions.
Hence, for the given values of the discriminant, we have that:
- discriminant = 0: 1 Real number solution.
- discriminant = -36: 0 Real number solutions.
- discriminant = 3: 2 Real number solutions.
- discriminant = 2: 2 Real number solutions.
- discriminant = 100: 2 Real number solutions.
- discriminant = -4: 0 Real number solutions.
More can be learned about quadratic functions at brainly.com/question/24737967
#SPJ1
I think the answer is D , I hope this helped. If not I’m sorry I tried my hardest
Answer:
yes it is 6
Step-by-step explanation:
Both are even numbers and caan be divided by 6 win 24 is divided by two I equals 12.
Answer:
∠3 = 60°
Step-by-step explanation:
Since g and h are parallel lines then
∠1 and ∠2 are same side interior angles and are supplementary, hence
4x + 36 +3x - 3 = 180
7x + 33 = 180 ( subtract 33 from both sides )
7x = 147 ( divide both sides by 7 )
x = 21
Thus ∠2 = (3 × 21) - 3 = 63 - 3 = 60°
∠ 2 and ∠3 are alternate angles and congruent, hence
∠3 = 60°