6g of hydrogen gas is my answer. I'm sorry if I'm wrong.
Explanation:
Since HF is a weak acid, the use of an ICE table is required to find the pH. The question gives us the concentration of the HF.
HF+H2O⇌H3O++F−HF+H2O⇌H3O++F−
Initial0.3 M-0 M0 MChange- X-+ X+XEquilibrium0.3 - X-X MX M
Writing the information from the ICE Table in Equation form yields
6.6×10−4=x20.3−x6.6×10−4=x20.3−x
Manipulating the equation to get everything on one side yields
0=x2+6.6×10−4x−1.98×10−40=x2+6.6×10−4x−1.98×10−4
Now this information is plugged into the quadratic formula to give
x=−6.6×10−4±(6.6×10−4)2−4(1)(−1.98×10−4)−−−−−−−−−−−−−−−−−−−−−−−−−−−−√2x=−6.6×10−4±(6.6×10−4)2−4(1)(−1.98×10−4)2
The quadratic formula yields that x=0.013745 and x=-0.014405
However we can rule out x=-0.014405 because there cannot be negative concentrations. Therefore to get the pH we plug the concentration of H3O+ into the equation pH=-log(0.013745) and get pH=1.86
Hey there!:
H is always +1 so the H's have a +3 charge.
O is always -2 so the O's have a -8 charge .
Now, suppose oxidation state for P = X , then :
+3 + X + (-8) = 0 (because of neutral molecule)
x = 8 - 3
x = + 5
So, X = +5 oxidation state.
Answer C
Hope that helps!
Answer: I don’t understand what your asking elaborate more
Explanation:
When compounds form, the atoms that bonded get a stable arrangement of electrons.
Compounds form because their atoms get a more stable arrangement than they had in the reactants.
A stable arrangement is a <em>complete octet</em> of eight electrons in the valence shell
.