Alcoholic fermentation fermentation produces CO2 bubbles in baking.
<u>Explanation:</u>
The other name given for the Alcoholic Fermentation is Ethanol fermentation. In this process of fermentation, ethanol and carbon dioxide are the resultant by-products. These are formed by the conversion of fructose,sucrose and glucose to cellular energy. This type of fermentation do not require oxygen for the process to take place. Hence, these are known to be an anaerobic process
This type of fermentation has its application like ethanol fuel production, cooking of bread, etc. A dough rises of the Ethanol fermentation. this is because, the sugars that are present in a dough are absorbed by yeast . this produces ethanol and carbon dioxide. During baking process,bubbles are formed by this carbon dioxide.
N2(g) + 3 H2(g) = 2NH3(g)
Qc = (NH3^2) / { (N2)(H)^3)}
Qc= 0.48^2 /{ ( 0.60) (0.760^3) }= 0.875
Qc < Kc therefore the equilibrium will shift to the right. This implies that Nh3 concentration will increase
<u>Answer:</u> The increase in pressure is 0.003 atm
<u>Explanation:</u>
To calculate the final pressure, we use the Clausius-Clayperon equation, which is:
where,
= initial pressure which is the pressure at normal boiling point = 1 atm
= final pressure = ?
= Enthalpy change of the reaction = 28.8 kJ/mol = 28800 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature =
= final temperature =
Putting values in above equation, we get:
Change in pressure =
Hence, the increase in pressure is 0.003 atm
Answer:
1 may is the answer for the question
Answer:
Energy transformation,also known as energy conversion,is the process of changing energy from one form to another.
Explanation:
For example,to heat a home,the fornace burns fuel,whose chemical potential energy is converted into thermal energy,which is then transferred to the homes air to raise its temperature.