Answer:
6227.866 N
Explanation:
F = G . m(goku) . m(planet) / d²
F = 6.674 x 10-¹¹ x 62 x 1.458 . 10¹⁵ / 31²
F = 6227.866 N
Explanation:
(a) Draw a free body diagram of the cylinder at the top of the loop. At the minimum speed, the normal force is 0, so the only force is weight pulling down.
Sum of forces in the centripetal direction:
∑F = ma
mg = mv²/RL
v = √(g RL)
(b) Energy is conserved.
EE = KE + RE + PE
½ kd² = ½ mv² + ½ Iω² + mgh
kd² = mv² + Iω² + 2mgh
kd² = mv² + (m RC²) ω² + 2mg (2 RL)
kd² = mv² + m RC²ω² + 4mg RL
kd² = mv² + mv² + 4mg RL
kd² = 2mv² + 4mg RL
kd² = 2m (v² + 2g RL)
d² = 2m (v² + 2g RL) / k
d = √[2m (v² + 2g RL) / k]
Answer:
C)T
Explanation:
The period of a mass-spring system is:
As can be seen, the period of this simple harmonic motion, does not depend at all on the gravitational acceleration (g), neither the mass nor the spring constant depends on this value.
Finding acceleration= final speed-initial speed/time taken (or A=V-U\T)
Finial speed= 27.8s
Initial speed= 0s
Time taken= 5.15
So..
27.8-0/5.15= 5.40m/s (rounded to two decimal places)
Based on my information, this would actually be representing
"the average kinetic energy of water particles". So, as you take notice that where this temperature is being located, and also, how this would be
°C, this would make more sense for this to be representing as <span>the
average kinetic energy of water particles.</span>