Answer:
A) heat
Explanation:
As kinetic energy increases, so does the heat energy produced. The faster the molecules move, the more heat that is generated.
Answer:
m = 0.59 kg.
Explanation:
First, we need to find the relation between the frequency and mass on a spring.
The Hooke's law states that
And Newton's Second Law also states that
Combining two equations yields
The term that determines the proportionality between acceleration and position is defined as angular frequency, ω.
And given that ω = 2πf
the relation between frequency and mass becomes
.
Let's apply this to the variables in the question.
<span>Answer:
The temperature doesn't affect the evaporation rate, but affects on how much of water a parcel of air can contain when saturated which is known by the absolute humidity. Hurricanes are usually happening when the temperature of the sea water west of the Cape Verde islands is over 27 degrees Celsius. If ahead of the path of a hurricane, the sea water temperature drops then it will be less moisture in the air and perhaps the hurricane will fade out. But it is not as simple. How strong a tropical storm is is relative to the difference of temperture between ground level and the top of the troposphere. The greater the difference, the faster the air will rise and the deeper the pressure will be, forcing surrounding air to rush in, thus forming a hurricane force wind. Then there is the fact that the wet adiabatic lapse rate is about half that of dry air. It means that rising moist air cools down slower and therefore rises higher. Hence water is the true fuel of bad weather. But it can't be isolated from the fact that the difference of temperature must be great too. What we often forget is that the tropopause (the border to the stratosphere) is much higher over the equator and therefore, much colder than e.g. the poles.</span>
<span>The Gravitational Force of an object is a measure of the amount of matter it contains. on the other hand __Matter__ is a measure of the gravitational force on an object. I hope it helps :)</span>
Answer:
Difference in height = 7.5 cm
Explanation:
We are given;.
Height of ethyl alcohol;h2 = 20 cm = 0.2 m
Density of glycerin: ρ1 = 1260 kg/m³
Density of ethyl alcohol; ρ2 = 790 kg/m³
To get the difference in height, the pressure at the top of the open end must be equal to the pressure at the point where the liquids do not mix since both points will be at different levels after the pouring.
Thus;
P1 = P2
Formula for pressure is; P = ρgh
Thus;
ρ1 × g × h1 = ρ2 × g × h2
g will cancel out to give;
ρ1 × h1 = ρ2× h2
Making h1 the subject, we have;
h1 = (ρ2× h2)/ρ1
h1 = (790 × 0.2)/1260
h1 = 0.125 m
Difference in height will be;
Δh = h2 - h1
Δh = 0.2 - 0.125
Δh = 0.075 m = 7.5 cm