Answer:
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
c) True. Information is missing to perform the calculation
Explanation:
Let's consider solving this exercise before seeing the final statements.
We use Newton's second law Rotational
τ = I α
T r = I α
T gR = I α
Alf = T R / I (1)
T = α I / R
Now let's use Newton's second law in the mass that descends
W- T = m a
a = (m g -T) / m
The two accelerations need related
a = R α
α = a / R
a = (m g - α I / R) / m
R α = g - α I /m R
α (R + I / mR) = g
α = g / R (1 + I / mR²)
We can see that the angular acceleration depends on the radius and the moments of inertia of the steering wheels, the mass is constant
Let's review the claims
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
b) False. Missing data for calculation
c) True. Information is missing to perform the calculation
d) False. There is a dependency if the radius and moment of inertia increases angular acceleration decreases
Explanation:
Because the temperature and the radiation are not correlated, they're not represented as functions of each other, they're represented as independent variables thus using graph 5 you cannot figure out how one affect another
Answer:
v= 1.71 m/s
Explanation:
Given that
Distance between two successive crests = 4.0 m
λ = 4 m
T= 7 sec
T is the time between 3 waves.
3 waves = 7 sec
1 wave = 7 /3 sec
So t= 7/3 s
We know that frequency f
f= 1/t= 3/7 Hz
Lets take speed of the wave is v
v= f λ
f=frequency
λ=wavelength
v= 3/7 x 4 = 12 /7
v= 1.71 m/s
<span>The meaning of the Big Bang has been very often misunderstood. It is thought that something exploded somewhere and then the exploded part expanded to where we are currently. I hope this did help If not I`m so sorry.</span>
Answer:
Explanation:
Expression for times period of a satellite can be given as follows
Time period T = 1.8 x 60 x 60
= 6480
T² = where T is time period , r is radius of orbit , G is gravitational constant and M is mass of the satellite.
6480² = 4 x 3.14² x 7.5³ x 10¹⁸ / GM
GM = 4 x 3.14² x 7.5³ x 10¹⁸ / 6480²
= 3.96 X 10¹⁴
Expression for acceleration due to gravity
g = GM / R² where R is radius of satellite
20 = 3.96 X 10¹⁴ / R²
R² = 3.96 X 10¹⁴ / 20
= 1.98 x 10¹³ m
R= 4.45 x 10⁶ m