Answer:
Chemical bonds are how atoms, and even molecules join together.
Explanation:
There are two main types of primary chemical bonds. While secondary links relate to molecules, primary ties are atom to atom. This answer explains basic primary bonds only.
One must comprehend what a valence shell is before I proceed. The outer electron orbital of an atom is known as the valence shell. Most of the time (except from hydrogen), atoms desire to have 8 electrons in their valence shell, thus they form bonds with other atoms to accomplish this.
<em>All bonds result in a new chemically different molecule. Now, the two types are:</em>
- Covalent: When two atoms combine their electrons to fill their valence shells. The atoms are joined together by this "sharing."
- Ionic: When one atom <em>transfers</em> an electron to another atom in order to fulfill the valence electron requirement. Because electrons have a negative charge, the atom that <em>produced </em>them gains a positive charge as a result of losing its negative charge. The atom that received the electron therefore acquires a negative charge. Because opposing charges attract, it seems sense that the charged atoms bind as a result.
Get the molarity we need to divide the number of moles of NaCl by the volume of the solution. So, 0.32 moles NaCl divided by 3.4 L, and that gives 0.094 M NaCl.
The s orbitals are not symmetrical in shape is a FALSE statement.
An s orbital is so symmetric, more specifically spherically symmetric that it looks the same from all directions.
- The atomic orbitals in the atoms of elements differ in shape.
In essence, the electrons they describe have varying probability distributions around the nucleus. The spherical symmetry of s orbitals is evident in the fact that all orbitals of a given shell in the hydrogen atom have the same energy.
- All s orbitals are spherically symmetrical. Put simply, an electron that occupies an s orbital can be found with the same probability at any orientation (at a distance) from the nucleus.
The s orbitals are therefore represented by a spherical boundary surface which is a surface which captures a high proportion of the electron density.
Read more:
brainly.com/question/5087295
Answer:
Your answers are solids, liquids, and gases.
Explanation:
These are the three states of matter.
<em>Please</em><em> like</em><em> and</em><em> mark</em><em> brainliest</em><em>!</em>
<em>Hope</em><em> it</em><em> helps</em><em>!</em>