independent variable: how much bread there is
dependant variable: temperature, location, time, size.
hypothesis, the one with the bread will be way more moist than the one without.
control group: no bread at all.
experimental group: brownies with bread
constants: same tupperware, placement, time, size.
Answer:
The given molecules are SO2 and BrF5.
Explanation:
Consider the molecule SO2:
The central atom is S.
The number of domains on S in this molecule is three.
Domain geometry is trigonal planar.
But there is a lone pair on the central atom.
So, according to VSEPR theory,
the molecular geometry becomes bent or V-shape.
Hybridization on the central atom is
.
Consider the molecule BrF5:
The central atom is Br.
The number of domains on the central atom is six.
Domain geometry is octahedral.
But the central atom has a lone pair of electrons.
So, the molecular geometry becomes square pyramidal.
The hybridization of the central atom is .
The shapes of SO2 and BrF5 are shown below:
Mass = 5 g
volume = 20 cm³
density = mass / volume
therefore:
D = m / V
D = 5 / 20
D = 0.25 g/cm³
Answer:
-133.2 kJ
Explanation:
Let's consider the following balanced equation.
4 KClO₃(s) → 3 KClO₄(s) + KCl(s)
We can calculate the standard Gibbs free energy of the reaction (ΔG°rxn) using the following expression.
ΔG°rxn = 3 mol × ΔG°f(KClO₄(s)) + 1 mol × ΔG°f(KCl(s)) - 4 mol × ΔG°f(KClO₃(s))
ΔG°rxn = 3 mol × (-303.1 kJ/mol) + 1 mol × (-409.1 kJ/mol) - 4 mol × (-296.3 kJ/mol)
ΔG°rxn = -133.2 kJ
<span>https://www.onetonline.org/find/career?c=6</span>