Answer:
Explanation:
2C₄H₁₀ + 13O₂ ⟶ 8CO₂ + 10H₂O
n/mol: 4.3
13 mol of O₂ react with 2 mol of 2C₄H₁₀
Answer:
c
Explanation:
the rate of a forward process must be exactly balanced by the rate of the reverse process.
Answers and Explanation:
a)- The chemical equation for the corresponden equilibrium of Ka1 is:
2. HNO2(aq)⇌H+(aq)+NO−2
Because Ka1 correspond to a dissociation equilibrium. Nitrous acid (HNO₂) losses a proton (H⁺) and gives the monovalent anion NO₂⁻.
b)- The relation between Ka and the free energy change (ΔG) is given by the following equation:
ΔG= ΔGº + RT ln Q
Where T is the temperature (T= 25ºc= 298 K) and R is the gases constant (8.314 J/K.mol)
At the equilibrium: ΔG=0 and Q= Ka. So, we can calculate ΔGº by introducing the value of Ka:
⇒ 0 = ΔGº + RT ln Ka
ΔGº= - RT ln Ka
ΔGº= -8.314 J/K.mol x 298 K x ln (4.5 10⁻⁴)
ΔGº= 19092.8 J/mol
c)- According to the previous demonstation, at equilibrium ΔG= 0.
d)- In a non-equilibrium condition, we have Q which is calculated with the concentrations of products and reactions in a non equilibrium state:
ΔG= ΔGº + RT ln Q
Q= ((H⁺) (NO₂⁻))/(HNO₂)
Q= ( (5.9 10⁻² M) x (6.7 10⁻⁴ M) ) / (0.21 M)
Q= 1.88 10⁻⁴
We know that ΔGº= 19092.8 J/mol, so:
ΔG= ΔGº + RT ln Q
ΔG= 19092.8 J/mol + (8.314 J/K.mol x 298 K x ln (1.88 10⁻⁴)
ΔG= -2162.4 J/mol
Notice that ΔG<0, so the process is spontaneous in that direction.
Answer:
enantiomers
Explanation:
L and D stand for levorotatory and dextrorotatory respectively. A levorotatory molecule will rotate the plane of plane polarised light left and a dextrorotatory molecule will rotate the plane of plane polarised light right. L and D molecules are non superimposable mirror image of each other. Therefore they are also known as enantiomers.
Answer:
Lewis structure for isomers of butane has been given below.
Explanation:
Butane is a saturated alkane with molecular formula . Due to different positing of methyl groups, positional isomerism exists in butane.
Butane has two positional isomers with same molecular formula. One is n-butane and another one is isobutane. Lewis structures of these two isomers have been given below.