Since it is restricted at both ends, λ/2 = length of string
λ/2 = 1.5m
λ = 1.5*2 = 3m
Answer:
a)ΔV = 6.48 KV
b)ΔU =18.79 mJ
Explanation:
Given that
E= 1.8 KV/m
a)
We know that
Electric potential difference ΔV given as
ΔV = E .d
Here
E= 1.8 KV/m
d= 3.6 m
ΔV = E .d
ΔV = 1.8 x 3.6 KV
ΔV = 6.48 KV
b)
Given that
q=+2.90 µC
Change in electric potential energy ΔU given as
ΔU = q .ΔV
ΔU =18.79 mJ
If the net force on object A is 5 N and the net force on object B is 10 N, then object B will accelerate more quickly than object A provided the mass of both objects are same.
Answer: Option C
<u>Explanation:
</u>
According to Newton’s second law of motion, any external force applied on an object is directly proportional to the mass and acceleration of the object. In order to state this law in terms of acceleration, it is stated that acceleration exhibited by any object is directly proportional to the net force applied on the object and inversely proportional to the mass of the object as shown below:
So if two objects A and B are identical which means they have same mass, then the acceleration attained by the object will be directly proportionate to the net forces exerted on the objects only.
Thus if the force applied is more for one object, then the object will be exhibiting more acceleration compared to the other one. So as object B is experiencing a net force of 10 N which is greater than the net force experiences by object A, then the object B will be accelerating more quickly compared to the object A's acceleration.
Answer:
The velocity of water at the bottom,
Given:
Height of water in the tank, h = 12.8 m
Gauge pressure of water,
Solution:
Now,
Atmospheric pressue,
At the top, the absolute pressure,
Now, the pressure at the bottom will be equal to the atmopheric pressure,
The velocity at the top, , l;et the bottom velocity, be .
Now, by Bernoulli's eqn:
where
Density of sea water,
You are in an early universe.
In the study of the evolution of the universe, it has been determined before Plank time (before the big bang and right after it), the early universe had the following characteristics:
- There was only one single force acting over all that existed.
- The early universe was very hot and dense because all matter had contracted before the big bang.
- Space and time were wrapped.
These characteristics match the ones described, based on this, we can conclude you are in an early universe.
Learn more about universe in: brainly.com/question/9724831