transform
new mats caused by intense forces and heat
Answer:
The submerged effective density is 86.93 kN/m³ or 8.693 Mg/m³
Explanation:
Given;
wet density of soil sample = 2.5 Mg/m³ = 25 kN/m³
Specific gravity of solid particle = 2.7
The dry unit weight of soil;
for undisturbed state, the volume of the soil is;
Submerged effective density is given as;
density of water (ρw) = 2.7 x 25 kN/m³ = 67.5 kN/m³, substitute this in the above equation;
Therefore, the submerged effective density is 86.93 kN/m³ or 8.693 Mg/m³
California I think not sure
Answer:
300 K
Explanation:
First, we have find the specific heat capacity of the unknown substance.
The heat gained by the substance is given by the formula:
H = m*c*(T2 - T1)
Where m = mass of the substance
c = specific heat capacity
T2 = final temperature
T1 = initial temperature
From the question:
H = 200J
m = 4 kg
T1 = 200K
T2 = 240 K
Therefore:
200 = 4 * c * (240 - 200)
200 = 4 * c * 40
200 = 160 * c
c = 200/160
c = 1.25 J/kgK
The heat capacity of the substance is 1.25 J/kgK.
If 300 J of heat is added, the new heat becomes 500 J.
Hence, we need to find the final temperature, T2, when heat is 500 J.
Using the same formula:
500 = 4 * 1.25 * (T2 - 200)
500 = 5 * (T2 - 200)
100 = T2 - 200
=> T2 = 100 + 200 = 300 K
The new final temperature of the unknown substance is 300K.
Explanation:
At first sight, it doesn’t make sense that both fission and fusion release energy.
The key is in how tightly the nucleons are held together in a nucleus. If a nuclear reaction produces nuclei that are more tightly bound than the originals, then the excess energy will be released.
It turns out that the most tightly bound atomic nuclei are around the size of iron-56.
Thus, if you split a nucleus that is much larger than iron into smaller fragments, you will release energy because the smaller fragments are at a lower energy than the original nucleus.
If instead you fuse very light nuclei to get bigger products, energy is again released because the nucleons in the products are more tightly bound than in the original nuclei.
https://socratic.org/questions/how-are-fusion-and-fission-similar