Answer:
"Non-uniform velocity" occurs when<em> an object changes its velocity </em>upon motion. This happens when the object either accelerates or decelerates <em>(negative acceleration)</em> in its speed or changes its direction.
Explanation:
"Velocity" refers to<em> speed with a specific direction. </em>
If the velocity is uniform, there's<u> no change in speed and direction</u>. However, if changes occur on either the speed, direction or both, then <em>the velocity becomes </em><u><em>variable or non-uniform.</em></u>
For example, when it comes to a moving car, it is said to be in non-uniform velocity if <em>the distances covered is unequal in relation to the equal intervals of time.</em>
We need to considerate only the horizontal component of the motion of the toy car.
The formula for the distance in a decelerated motion is:
s = s₀ + v₀·t - 1/2·a·t²
where:
s₀ = initial position = 0
v₀ = initial velocity = 1.21 m/s
t = time elapsed = 0.342 s
a = deceleration = 0.131 m/s²
Plugging in numbers:
s = 0 + 1.21×0.342 - 0.5×0.141×(0.342)²
= 0.406 m
Hence, the toy car traveled a distance of about 41 cm.
Answer:
The tabletop is smooth so my finger is down it fast and easy. The fabric however slowed my finger down considerably, and it was harder for me to move my finger across it.
Explanation:
Hope this helps.
Answer:
(a)
(b)
Explanation:
<u>Electric Circuits</u>
Suppose we have a resistive-only electric circuit. The relation between the current I and the voltage V in a resistance R is given by the Ohm's law:
(a) The electromagnetic force of the battery is and its internal resistance is . Knowing the equivalent resistance of the headlights is , we can compute the current of the circuit by using the Kirchhoffs Voltage Law or KVL:
Solving for i
i=2.28\ A
The potential difference across the headlight bulbs is
(b) If the starter motor is operated, taking an additional 35 Amp from the battery, then the total load current is 2.28 A + 35 A = 37.28 A. Thus the output voltage of the battery, that is the voltage that the bulbs have is
Answer: a=-2.4525 m/s^2
d=s=190.3 m
Explanation:The only force that is stopping the car and causing deceleration is the frictional force Fr
Fr = 25% of weight
W=mg
W=1750*9.81
W=17167.5
Hence
Frictional force is negative as it acts in opposite direction
According to newton second law of motion
F=ma
hence
given
u= 110 km/h
u=110*1000/3600
u=30.55 m/s
to get t we know that final velocity v=0