Answer:
Option d: C₈H₉NO₂ = acetaminophen, analgesic
Explanation:
% composition of compound is:
63.57 g of C
6 g of H
9.267 g of N
21.17 g of O
First of all we divide each by the molar mass of the element
63.57 g / 12 gmol = 5.29 mol of C
6 g of H / 1 g/mol = 6 mol H
9.267 g of N / 14 g/mol = 0.662 mol of N
21.17 g of O / 16 g/mol = 1.32 mol of O
We divide each by the lowest value, in this case 0.662
5.29 / 0.662 = 8
6 / 0.662 = 9
0.662 / 0.662 = 1
1.32 / 0.662 = 2
Molecular formula of the compound is C₈H₉NO₂
Given buffer:
potassium hydrogen tartrate/dipotassium tartrate (KHC4H4O6/K2C4H4O6 )
[KHC4H4O6] = 0.0451 M
[K2C4H4O6] = 0.028 M
Ka1 = 9.2 *10^-4
Ka2 = 4.31*10^-5
Based on Henderson-Hasselbalch equation;
pH = pKa + log [conjugate base]/[acid]
where pka = -logKa
In this case we will use the ka corresponding to the deprotonation of the second proton i.e. ka2
pH = -log Ka2 + log [K2C4H4O6]/[KHC4H4O6]
= -log (4.31*10^-5) + log [0.0451]/[0.028]
pH = 4.15
Answer:
The final volume when pressure is changed is 126.1mL
Explanation:
Based on Boyle's law, in a gas the volume is inversely proportional to its pressure when temperature remains constant. The equation is:
P₁V₁ = P₂V₂
<em>Where P is pressure and V volume of 1, intial state and 2, final state.</em>
<em />
Computing the values of the problem:
350mmHg*200mL = 555mmHgV₂
126.1mmHg = V₂
<h3>The final volume when pressure is changed is 126.1mL</h3>
Answer:
B
Explanation:
why because think about it 0.5 is more closer to 1.0