Answer:
The increase in potential energy of the ball is 115.82 J
Explanation:
Conceptual analysis
Potential Energy (U) is the energy of a body located at a certain height (h) above the ground and is calculated as follows:
U = m × g × h
U: Potential Energy in Joules (J)
m: mass in kg
g: acceleration due to gravity in m/s²
h: height in m
Equivalences
1 kg = 1000 g
1 ft = 0.3048 m
1 N = 1 (kg×m)/s²
1 J = N × m
Known data
Problem development
ΔU: Potential energy change
ΔU = U₂ - U₁
U₂ - U₁ = mₓgₓh₂ - mₓgₓh₁
U₂ - U₁ = mₓg(h₂ - h₁)
The increase in potential energy of the ball is 115.82 J
Answer:
The final velocity of the object is, = 27 m/s
Explanation:
Given,
The acceleration of the object, a = 1000 m/s²
The initial displacement of the object, = 0 m
The final displacement of the object, = 0.75 m
The initial velocity of the object will be, = o m/s
The final velocity of the object, = ?
The average velocity of the object,
v = ( - )/ t
= 0.75 / t
The acceleration is given by the relation
a = v / t
1000 m/s² = 0.75 / t²
t² = 7.5 x 10⁻⁴
t = 0.027 s
Using the I equation of motion,
= u + at
Substituting the values
= 0 + 1000 x 0.027
= 27 m/s
Hence, the final velocity of the object is, = 27 m/s
Answer:
In the electric field, the like charges repel each other, and the unlike charges attract each other, whereas in a magnetic field the like poles repel each other and the unlike poles attract each other.
Explanation:
5
if zero falls between two significant numbers it becomes significant.