The gravitational force between two objects is given by:
where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is their separation
In this problem, the first object has a mass of
, while the second "object" is the Earth, with mass
. The distance of the object from the Earth's center is
; if we substitute these numbers into the equation, we find the force of gravity exerted by the Earth on the mass of 0.60 kg:
Answer:
Dr = 263 10⁻⁶ m
Explanation:
The diffraction pattern for constructive interference is described by
a sin θ = m λ
in this it indicates that the order of diffraction is m = 1
Let's use a direct proportion rule to find the separation of two slits. If there are 600 lines in 1 me, what is the distance between 2 slits
a = 2 lines 1/600
a = 2/600
a = 3.33 10⁻³ mm = 3.33 10⁻⁴ cm
let's use trigonometry
tan θ = y / L
as the measured angles are small
tan θ = sin θ / cos θ sin θ
sin θ = y / L
we substitute
a y/L = λ
y = λ L / a
for λ = 400 10-9 m
I = 400 10⁻⁹ 2.9 / 3.33 10⁻³
i = 346.89 10⁻⁶ m
f
or λ = 700 nm
y_f = 700 10⁻⁻⁹ 2.9 / 3.33 10⁻³
y_f = 609.609 10⁻⁶ m
the separation of this spectrum
Δr = v_f - i
Dr = (609.609 - 346) 10 ⁻⁶
Dr = 263 10⁻⁶ m
The acceleration is 3.3 m/s2
The relationship between current and voltage and resistance is described by ohlm's law. This equation i=v/r tells that the current i flowing through a circuit is directly proportional to the voltage v, and inversely proportional to resistance r. This desceibes the relationship of voltage, current and resistance.
Answer:
<em>v = 381 m/s</em>
Explanation:
<u>Linear Speed</u>
The linear speed of the bullet is calculated by the formula:
Where:
x = Distance traveled
t = Time needed to travel x
We are given the distance the bullet travels x=61 cm = 0.61 m. We need to determine the time the bullet took to make the holes between the two disks.
The formula for the angular speed of a rotating object is:
Where θ is the angular displacement and t is the time. Solving for t:
The angular displacement is θ=14°. Converting to radians:
The angular speed is w=1436 rev/min. Converting to rad/s:
Thus the time is:
t = 0.0016 s
Thus the speed of the bullet is:
v = 381 m/s