Answer:
The equation of equilibrium at the top of the vertical circle is:
\Sigma F = - N - m\cdot g = - m \cdot \frac{v^{2}}{R}
The speed experimented by the car is:
\frac{N}{m}+g=\frac{v^{2}}{R}
v = \sqrt{R\cdot (\frac{N}{m}+g) }
v = \sqrt{(5\,m)\cdot (\frac{6\,N}{0.8\,kg} +9.807\,\frac{kg}{m^{2}} )}
v\approx 9.302\,\frac{m}{s}
The equation of equilibrium at the bottom of the vertical circle is:
\Sigma F = N - m\cdot g = m \cdot \frac{v^{2}}{R}
The normal force on the car when it is at the bottom of the track is:
N=m\cdot (\frac{v^{2}}{R}+g )
N = (0.8\,kg)\cdot \left(\frac{(9.302\,\frac{m}{s} )^{2}}{5\,m}+ 9.807\,\frac{m}{s^{2}} \right)
N=21.690\,N
The appropriate response is letter D. The wave ventures slower and with an expanded wavelength when a sound wave entering a range of hotter air. Hotter air implies less thick, so the wave ought to back off.
I hope the answer will help you, feel free to ask more in brainly.
Answer:
The answer to your question is the letter A) F = 9.23 x 10⁻⁷ N
Explanation:
Data
q₁ = -6.25 x 10⁻⁹ C
q₂ = -6.25 x 10⁻⁹ C
d = 0.617 m
k = 9 x 10⁹ Nm²/C²
F = ?
Formula
F = k q₁q₂ /r²
-Substitution
F = (9 x 10⁹)(-6.25 x 10⁻⁹)(-6.25 x 10⁻⁹) / (0.617)²
-Simplification
F = 3.512 x 10⁻⁷ / 0.381
-Result
F = 9.227 x 10⁻⁷ N ≈ 9.23 x 10⁻⁷ N