Answer:
1. 17.5 g of CO₂
2. The limiting reactant is carbon (graphite), and its formula is C(graphite)
3. 3.7 g of O₂
Explanation:
First, we have to write the chemical equation for the reaction. For this, we have to know the chemical formula of each reactant and product:
- Reactants: carbon(graphite) ⇒ C(graphite) ; oxygen gas ⇒ O₂(g)
- Products: carbon dioxide ⇒ CO₂(g)
Thus, we write the chemical equation:
C(graphite) + O₂(g) → CO₂(g)
The equation is already balanced because it has the same number of C and O atoms on both sides. Thus, we can see that 1 mol of C(graphite) reacts with 1 mol of O₂ and produce 1 mol of CO₂ (mole-to-mole reaction).
Now we convert the grams of reactants to moles by using the molecular weight (Mw) of each compound:
Mw(C) = 12 g/mol
moles of C(graphite) = 4.77g/(12 g/mol) = 0.3975 mol
Mw(O₂) = 16 g/mol x 2 = 32 g/mol
moles of O₂ = 16.4 g/(32 g/mol) = 0.5125 mol
Now, we can compare the stoichiometric ratio (given by the moles of reactants in the equation) with the actual ratio (given by the mass of reactants we have):
stoichiometric ratio ⇒ 1 mol C(graphite)/mol O₂
actual ratio ⇒ 0.3975 mol C(graphite)/0.5125 mol O₂
We can see that we need 0.3975 moles of O₂ to react with C(graphite) and we have more moles (0.5125 mol) so the excess reactant is O₂. Thus, the limiting reactant is C(graphite).
The amount of product (CO₂) that is formed is calculated from the amount of limiting reactant. We can see in the chemical equation that 1 mol of CO₂ is produced from 1 mol of C(graphite) ⇒ stoichiometric ratio = 1 mol CO₂/mol C(graphite).
Thus, we multiply the moles of C(graphite) we have by the stoichiometric ratio to calculate the moles of CO₂ produced:
moles of CO₂ = 0.3975 mol C(graphite) x 1 mol CO₂/mol C(graphite) = 0.3975 mol CO₂
Now, we convert the moles of CO₂ to mass by using the Mw:
Mw(CO₂) = 12 g/mol + (16 g/mol x 2) = 44 g/mol
mass of CO₂ = 0.3975 mol CO₂ x 44 g/mol CO₂ = 17.5 g
Therefore, the maximum amount of carbon dioxide (CO₂) formed is 17.5 g.
Since this is a mole-to-mole reaction, the moles of excess reactant that remains after the reaction is complete is calculated as the difference between the moles of excess reactant and limiting reactant:
remaining moles of O₂ = 0.5125 mol - 0.3975 mol = 0.115 mol O₂
Finally, we convert the moles of O₂ to mass with the Mw (32 g/mol) :
mass of O₂ = 0.115 mol O₂ x 32 g/mol = 3.68 g
Therefore, the mass of the excess reagent that remains after the reaction is complete is 3.7 g.