During either one, the sun, moon, and Earth are lined up in the same straight line. The difference is whether the moon or the Earth is the one in the "middle".
Answer:
True
Explanation:
Magnetic field lines outside of a permanent magnet always run from the north magnetic pole to the south magnetic pole. Therefore, the magnetic field lines of the earth run from the southern geographic hemisphere towards the northern geographic hemisphere.
Hello, love! The answer is True, or T, on Edge2020.
Hope this helped!
~ V.
From the equations of linear motion,
v² = u² + 2as where v is the final velocity, u is the initial velocity and a is the gravitational acceleration, and s is the displacement,
Thus, v² = u² -2gs, but v=0
hence, u² = 2gs
= 2×9.81×0.43
= 8.4366
u = √8.4366
=2.905 m/s
Hence the initial velocity is 2.905 m/s
Then using the equation v= u +gt .
Therefore, v = u -gt. (-g because the player is jumping against the gravity)
but, v = 0
Thus, u= gt
Hence, t = u/g
= 2.905/9.81
= 0.296 seconds
Answer:
-1.5m/s²
Explanation:
Acceleration can be thought of as [Change in Velocity]/[Change in time]. To find these changes, you simply subtract the initial quantity from the final quantity.
So for this question you have:
- V_i = 110m/s
- V_f = 80m/s
- t_i = 0s
- t_f = 20s
which means that the acceleration = (80-110)/(20-0)[m/s²] = (-30/20)m/s² = -1.5m/s²