Answer:
The wavelength of this wave is 1.01 meters.
Explanation:
The variation in the pressure of helium gas, measured from its equilibrium value, is given by :
..............(1)
The general equation is given by :
...........(2)
On comparing equation (1) and (2) :
Since,
So, the wavelength of this wave is 1.01 meters. Hence, this is the required solution.
The diameter of the sphere is 2cm.
<h3>How to calculate the diameter?</h3>
From the diagram, the first sphere on the ruler is at 4cn and the last sphere is at 12cm.
Therefore, the length will be:
= 12 - 4.
= 8cm
The diameter of one sphere will be:
= Length / 4
= 8/4
= 2
Therefore, the diameter of the sphere is 2cm.
Note that the second question wasn't found online.
Learn more about diameter on:
brainly.com/question/358744
#SPJ1
Answer:
R=m*g-∀fl*g*l3
Explanation:
<em>An iron block of density rhoFe and of volume l 3 is immersed in a fluid of density rhofluid. The block hangs from a scale which reads W as the weight. The top of the block is a height h below the surface of the fluid. The correct equation for the reading of the scale is</em>
From Archimedes' principle we know that a body when immersed in a fluid, fully or partially, experiences an the upward buoyant force equal to the weight of the fluid displaced. As the body is fully submerged in water, volume of water displaced
density of iron =mass/ volume
rho=m/l3
mass=rhol3
weight fluid=rhofluid*g*Volume
weight of fluid=rhofluid*g*l3
F=∀fl*g*l3
Downward force is weight of iron
w=m*g
Reading on the spring scale
R=w-F
R=m*g-∀fl*g*l3
m=mass of iron
g=acceleration due to ravity
rhfld=density of fluid
l3=volume of fluid displaced
Answer:
Actually it's 2.50 m/s, sorry
Explanation:
It is solved by using momentum conservation equation
combined mass of crow and feeder = 450+670=1120 gm
let the recoil speed of feeder be v m/s
Then applying momentum conservation we get;
1120×1.5 = 670×v
v= 2.50 m/s
the speed at which the feeder initially recoils backwards = 2.50 m/s