Answer:
More information so I can answer please.
Explanation:
1. C
2. C
3. In elastic deformation, the deformed body returns to its original shape and size after the stresses are gone. In ductile deformation, there is a permanent change in the shape and size but no fracturing occurs. In brittle deformation, the body fractures after the strength is above the limit.
4. Normal faults are faults where the hanging wall moves in a downward force based on the footwall; they are formed from tensional stresses and the stretching of the crust. Reverse faults are the opposite and the hanging wall moves in an upward force based on the footwall; they are formed by compressional stresses and the contraction of the crust. Thrust faults are low-angle reverse faults where the hanging wall moves in an upward force based on the footwall; they are formed in the same way as reverse faults. Last, Strike-slip faults are faults where the movement is parallel to the crust of the fault; they are caused by an immense shear stress.
I hope this helped! These are COMPLEX questions though! =D
Write an balance the equation
Na2O + H2O -> 2 NaOH
Calculate the molecular mass of Na2O and NaOH from the atomic mass from the periodic table.
Na = 23
O=16
H=1
Na2O = 23 * 2 + 16 = 62
NaOH = 23+16+1= 40
For the stoichiometry of the reaction one mole of Na2O = 62g produce two mol of NaOH = 2* 40= 80 g
120 g Na2O x 80g NaOH / 62g Na2O=
154.8 g NaOH