Answer:
v₁f = 0.5714 m/s (→)
v₂f = 2.5714 m/s (→)
e = 1
It was a perfectly elastic collision.
Explanation:
m₁ = m
m₂ = 6m₁ = 6m
v₁i = 4 m/s
v₂i = 2 m/s
v₁f = ((m₁ – m₂) / (m₁ + m₂)) v₁i + ((2m₂) / (m₁ + m₂)) v₂i
v₁f = ((m – 6m) / (m + 6m)) * (4) + ((2*6m) / (m + 6m)) * (2)
v₁f = 0.5714 m/s (→)
v₂f = ((2m₁) / (m₁ + m₂)) v₁i + ((m₂ – m₁) / (m₁ + m₂)) v₂i
v₂f = ((2m) / (m + 6m)) * (4) + ((6m -m) / (m + 6m)) * (2)
v₂f = 2.5714 m/s (→)
e = - (v₁f - v₂f) / (v₁i - v₂i) ⇒ e = - (0.5714 - 2.5714) / (4 - 2) = 1
It was a perfectly elastic collision.
Answer:
D)Not enough information
Explanation:
According to Pascal's principle, the pressure exerted on the two pistons is equal:
Pressure is given by the ratio between force F and area A, so we can write
The force exerted on each piston is just equal to the weight of the corresponding mass: , where m is the mass and g is the gravitational acceleration. So the equation becomes
Now we can rewrite the mass as the product of volume, V, times density, d:
We also know that
So we can further re-arrange the equation (and simplify g as well):
We are also told that block B has bigger volume than block A: . However, this information is not enough to allow us to say if the fraction on the right is greater than 1 or smaller than 1: therefore, we cannot conclude anything about the densities of the two objects.
Answer:
Explanation:
1st one
What is your evidence?
Very heavy professional or restaurant pans will have iron handles, while those for home use will be made of brass or stainless steel. All are perfectly safe for oven use.