Answer: 1.77 s
Explanation: In order to solve this problem we have to use the kinematic equation for the position, so we have:
xf= xo+vo*t+(g*t^2)/2 we can consider the origin on the top so the xo=0 and xf=29 m; then
(g*t^2)/2+vo*t-xf=0 vo is the initail velocity, vo=7.65 m/s
then by solving the quadratric equation in t
t=1.77 s
Answer:
170 W
Explanation:
Applying
P = VI.................... Equation 1
Where P = Power generated in watt, V = Voltage supplied to the circuit, I = Current running through the circuit.
From the question,
Given: V = 17 V, I = 10 A
Substitute these values into equation 1
P = (17×10)
P = 170 Watt.
Hence the power generated is 170 W.
The right option is A. 170 W
Answer:
50 W
Explanation:
<h3>
<u>Given :</u></h3>
- Force applied = 100 N
- Distance covered = 5 metres
- Time = 10 seconds
<h3>
<u>To find :</u></h3>
Power
<h3>
<u>Solution :</u></h3>
For calculating power, we first need to know about the work done.
Now, substituting values in the above formula;
Work = 100 × 5
= 500 Nm or 500 J
We know that,
Substituting values in above formula;
Power = 500/ 10
= 50 Nm/s or 50 W
Hence, power = 50 W .
<span>Days and nights are equal in length everywhere.(gradpoint)</span>
Answer: I am pretty sure that you should pick radio waves.
Explanation: The scientist should use radio waves. I think this because you can use the radio waves to analyze the signals from outer space. This will work much better than anything there, to analyze it the best possible.
The best I could do.