Answer:
njbvi3brfjkncdoewkmdrfrj
Step-by-step explanation:
gagagagagaggag
We have an isosceles triangle;
A=opposite angle side a.
B=opposite angle side b.
C=opposite angle side c.
A=B
Method 1:
We can divide the isosceles triangle in two right triangles,
hypotenuse=7
side=9/2=4.5
B=A=arccossine (4.5/7)=49.994799...º≈50º
C/2=90º-50º=40º ⇒ C=2*40º=80º
Answer:
a=7; A=50º
b=7; B=50º
<span>c=9; C=80º
Method 2:
Law of cosines:
a²=b²+c²-2bcCosA ⇒CosA=(a²-b²-c²)/(-2bc)
CosA=(49-49-81) / (-126)=0.642857
A=arco cos (81/126)≈50º
B=A=50º
A+B+C=180º
50º+50º+C=180º
C=180º-100º
C=80º
Answer:
</span>a=7; A=50º
b=7; B=50º
<span>c=9; C=80º</span>
Answer:
The measure of segment AC is 36 units
Step-by-step explanation:
- The mid-point divides the segment into two equal parts in length
- B is the mid point of segment AC
- That means B divides segment AC into two equal parts in length
∴ AB = BC
∵ AC = 5x - 9
∵ AB = 2x
- The two parts AB and BC are equal in length
∴ BC = 2x
∵ AC = AB + BC
- Substitute the values of AB and BC in the expression of AC
∴ AC = 2x + 2x
∴ AC = 4x
∵ AC = 5x - 9
- Equate the two values of AC
∴ 5x - 9 = 4x
- Add 9 to both sides
∴ 5x = 4x + 9
- Subtract 4x from both sides
∴ x = 9
- Substitute the value of x in any expression of AC
∵ AC = 4x
∵ x = 9
∴ AC = 4(9) = 36
* The measure of segment AC is 36 units
The answer is B)Two rectangular pyramids joined at two congruent lateral faces
Answer:
a.) write an equation to represent this situation
Step-by-step explanation: