Solve the following triangle in which given sides are
a=7 b=7 c=9
1 answer:
We have an isosceles triangle;
A=opposite angle side a.
B=opposite angle side b.
C=opposite angle side c.
A=B
Method 1:
We can divide the isosceles triangle in two right triangles,
hypotenuse=7
side=9/2=4.5
B=A=arccossine (4.5/7)=49.994799...º≈50º
C/2=90º-50º=40º ⇒ C=2*40º=80º
Answer:
a=7; A=50º
b=7; B=50º
<span>c=9; C=80º
Method 2:
Law of cosines:
a²=b²+c²-2bcCosA ⇒CosA=(a²-b²-c²)/(-2bc)
CosA=(49-49-81) / (-126)=0.642857
A=arco cos (81/126)≈50º
B=A=50º
A+B+C=180º
50º+50º+C=180º
C=180º-100º
C=80º
Answer:
</span>a=7; A=50º
b=7; B=50º
<span>c=9; C=80º</span>
You might be interested in
Answer:
-6k+16g-8
Step-by-step explanation:
simplify
Answer:
(0,3]
Step-by-step explanation:
You put ( when the number is included and ] when the number isn't included. So 0 is included and 3 isn't.
Answer:
c and d
Step-by-step explanation:
bruh you wouldent sbtract 30
Constant=2 you can try this method with the other points
Answer:
3,-6
Step-by-step explanation:
if you need the work I’ll write it in the comments