The mass number = protons + neutrons. Bromine has a mass number of 80<span> and 35 protons so </span>80<span>-35 = </span>45<span> neutrons. b) How many electrons does the neutral atom of bromine have? The neutral atom of bromine has 35 electrons because the number of electrons equals the number of protons.</span>
<h2>Question:- </h2>
A solution has a pH of 5.4, the determination of [H+].
<h2>Given :- </h2>
- pH:- 5.4
- pH = - log[H+]
<h2>To find :- concentration of H+</h2>
<h2>Answer:- Antilog(-5.4) or 4× 10-⁶</h2>
<h2>Explanation:- </h2><h3>Formula:- pH = -log H+ </h3>
Take negative to other side
-pH = log H+
multiple Antilog on both side
(Antilog and log cancel each other )
Antilog (-pH) = [ H+ ]
New Formula :- Antilog (-pH) = [+H]
Now put the values of pH in new formula
Antilog (-5.4) = [+H]
we can write -5.4 as (-6+0.6) just to solve Antilog
Antilog ( -6+0.6 ) = [+H]
Antilog (-6) × Antilog (0.6) = [+H]
put the value in equation
Answer:
ΔH = 2.68kJ/mol
Explanation:
The ΔH of dissolution of a reaction is defined as the heat produced per mole of reaction. We have 3.15 moles of the solid, to find the heat produced we need to use the equation:
q = m*S*ΔT
<em>Where q is heat of reaction in J,</em>
<em>m is the mass of the solution in g,</em>
<em>S is specific heat of the solution = 4.184J/g°C</em>
<em>ΔT is change in temperature = 11.21°C</em>
The mass of the solution is obtained from the volume and the density as follows:
150.0mL * (1.20g/mL) = 180.0g
Replacing:
q = 180.0g*4.184J/g°C*11.21°C
q = 8442J
q = 8.44kJ when 3.15 moles of the solid react.
The ΔH of the reaction is:
8.44kJ/3.15 mol
= 2.68kJ/mol