Answer:
3.83333333333
Step-by-step explanation:
<em><u>Question:</u></em>
Juan Invest $3700 In A Simple Interest Account At A Rate Of 4% For 15 Years. How Much Money Will Be In The Account After 15 Years?
<em><u>Answer:</u></em>
There will be $ 5920 in account after 15 years
<em><u>Solution:</u></em>
<em><u>The simple interest is given by formula:</u></em>
Where,
p is the principal
n is number of years
r is rate of interest
From given,
p = 3700
r = 4 %
t = 15 years
Therefore,
<em><u>How Much Money Will Be In The Account After 15 Years?</u></em>
Total money = principal + simple interest
Total money = 3700 + 2220
Total money = 5920
Thus there will be $ 5920 in account after 15 years
Assuming a d-heap means the order of the tree representing the heap is d.
Most of the computer applications use binary trees, so they are 2-heaps.
A heap is a complete tree where each level is filled (complete) except the last one (leaves) which may or may not be filled.
The height of the heap is the number of levels. Hence the height of a binary tree is Ceiling(log_2(n)), for example, for 48 elements, log_2(48)=5.58.
Ceiling(5.58)=6. Thus a binary tree of 6 levels contains from 2^5+1=33 to 2^6=64 elements, and 48 is one of the possibilities. So the height of a binary-heap with 48 elements is 6.
Similarly, for a d-heap, the height is ceiling(log_d(n)).
Answer:
the measure of ∠1 is 92 degrees
Step-by-step explanation: