Answer:
For each scenario as following:
A. 3 Potential deaths by chlorine exposure
B. 1 Potential deaths by chlorine exposure
C. 3 Potential deaths by chlorine exposure
Explanation:
According to Freitag, 1941 Chlorine exposure can be lethal at the concentration of 34-51 ppm in a time of 1h-1.5h. The answers are based on his reference.
In general, solubility increases with temperature. When you increase the temperature of a solvent, you increase the kinetic energy (or energy of movement) of the molecules, and this greater energy helps dissolve more of the solute molecules.
Answer:
See Explanation Below
Explanation:
A) The rate law can only be on the reactant side and you can only determine it after you get the net ionic equation because of spectators cancelling out. So in this case the rate law is k=[CH3Br]^1 [OH-]^1. The powers are there because the rxn is first order.
B) Since the rxn is first order anything you do to it will be the exact same "counter rxn" per say so since you are decreasing the OH- by 5 the rate will decease by 5
C) The rate will increase by 4 since you are doubling both you have to multiply them both.
Answer:
Option B. 3.0 M
Explanation:
From the question given above, the following data were obtained:
Volume of solution = 3.0 L
Mole of MgCl₂ = 9 moles
Molarity =?
Molarity can simply be defined as the mole of solute per unit litre of the solution. Mathematically, it can be expressed as:
Molarity = mole of solute /Volume of solution
With the above formula, we can obtain the molarity of the solution as follow:
Volume of solution = 3.0 L
Mole of MgCl₂ = 9 moles
Molarity =?
Molarity = mole of solute /Volume of solution
Molarity = 9 / 3
Molarity = 3 mol/L = 3.0 M
Thus, the molarity of the solution is 3 M