Answer:
hope this helps!
Explanation:
Volume of the air bubble, V1=1.0cm3=1.0×10−6m3
Bubble rises to height, d=40m
Temperature at a depth of 40 m, T1=12oC=285K
Temperature at the surface of the lake, T2=35oC=308K
The pressure on the surface of the lake: P2=1atm=1×1.103×105Pa
The pressure at the depth of 40 m: P1=1atm+dρg
Where,
ρ is the density of water =103kg/m3
g is the acceleration due to gravity =9.8m/s2
∴P1=1.103×105+40×103×9.8=493300Pa
We have T1P1V1=T2P2V2
Where, V2 is the volume of the air bubble when it reaches the surface.
V2=
Explanation:
Given Data:
mass of dog = 12 Kg
dog's center of mass = 0.20m
length of dog = 0.50m
height of dog's jump = ?
Solution:
Work done of gravitational force = Gain in Potential energy
2.1 × mgΔh = mg (h - 0.1)
2.1 × (0.3 - 0.1) = (h - 0.1)
h = 0.52 m
Answer: 31.6ft
Explanation:
Check the attachment for the diagram.
According to the right angle triangle AEC, we will use Pythagoras theorem to get |AC|. Note that |AE| = |AB| - |CD|
that is 20ft - 10ft = 10ft
According to the theorem, the square of the sum of the adjacent side and the opposite side is equal to the square of the hypotenuse.
|AE|^2 + |EC|^2 = |AC|^2
10^2 + 30^2 = |AC|^2
100 + 900 = |AC|^2
|AC| = √1000
|AC| = 31.6ft
Therefore, the wire should be anchored 31.6ft to the ground to minimize the amount of wire needed.
Answer:
Right now I have three.
Explanation: Thanks for the points luv ^-^.