Answer:
Heat causes the molecules to move faster, (heat energy is converted to kinetic energy ) which means that the volume of a gas increases more than the volume of a solid or liquid.
Explanation:
The mass of the planet Gallifrey is 8 times the mass of the Earth.
- let the gravitational field of Earth = g
- let the radius of the Earth = R
- gravitational field of Gallifrey = 2g
- radius of Gallifrey = 2R
<h3>What is gravitational potential energy?</h3>
- This is the work done in moving an object to a certain distance against gravitational field.
The gravitational field strength of the Earth is given as follows;
The gravitational field strength of the Planet Gallifrey is calculated as follows;
Thus, the mass of the planet Gallifrey is 8 times the mass of the Earth.
Learn more about gravitational field strength here: brainly.com/question/14080810
Answer:
Time = 1.75[s]; Distance traveled = 21.5 [m]; Max height = 15 [m]
Explanation:
First, we have to break down the velocity vector into the X & y components.
To find the time t that lasts the ball of cannon in the air we must use the following equation of kinematics, in this equation the value of y is equal to zero because it will be proposed that the ball lands at the same level that was fired.
In order to find the distance traveled horizontally from the cannonball, we must use the speed kinematics equation in the X coordinate.
In order to find the last value, we must bear in mind that when the cannonball reaches the maximum height, the velocity in the component y is equal to zero, and we can find the value of and with the following kinematic equation
Answer:
The magnitude of the uniform magnetic field exerting this torque on the loop is 1.67 T
Explanation:
Given;
radius of the wire, r = 0.45 m
current on the loop, I = 2.4 A
angle of inclination, θ = 36⁰
torque on the coil, τ = 1.5 N.m
The torque on the coil is given by;
τ = NIBAsinθ
where;
B is the magnetic field
Area of the loop is given by;
A = πr² = π(0.45)² = 0.636 m
τ = NIBAsinθ
1.5 = (1 x 2.4 x 0.636 x sin36)B
1.5 = 0.8972B
B = 1.5 / 0.8972
B = 1.67 T
Therefore, the magnitude of the uniform magnetic field exerting this torque on the loop is 1.67 T
Imagine a car crash. A car coming at a high speed has a head on collision with a car at rest. When the car makes impact, it will move the other car with it at a slower speed then it was travelling at. In this case, the velocity decreased since the car slowed down, but the mass increased since there are now two cars moving. Momentum was conserved because the change in mass accounts for the loss of velocity.