- Initial velocity (u) = 0 m/s [the car was at rest]
- Distance (s) = 80 m
- Time (t) = 10 s
- Let the magnitude of acceleration be a.
- By using the equation of motion, we get,
<u>A</u><u>nswer:</u>
<u>The </u><u>magnitude</u><u> </u><u>of </u><u>its </u><u>acceleration</u><u> </u><u>is </u><u>1</u><u>.</u><u>6</u><u> </u><u>m/</u><u>s^</u><u>2</u><u>.</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.
Answer:
A
Explanation:
Resistors in series add. There is only one path the current can take. That's why Christmas Tree lights sometimes give a lot of trouble. If a bulb burns out, it could be any one of them and time is needed to find the burned out bulb.
That being the case R = R1 + R2
R1 = 50 ohms
R2 = 50 ohms
R = 50 + 50
R = 100 ohms
Answer A
Interference and diffraction are the phenomena that support only the wave theory of light. Options 2 and 3 are correct.
<h3 /><h3>What is the interference of waves?</h3>
The result of two or more wave trains flowing in opposite directions on a crossing or coinciding pathways. This phenomenon is known as the interference of waves.
The phenomenon of interference occurs when two wave pulses are traveling along a string toward each other.
The light wave hypothesis states that light behaves like a wave. Since light is an electromagnetic wave, it may be transmitted without a physical medium.
Light has magnetic and electric fields, much like electromagnetic waves do.
Transverse waves, such as those seen in light waves, oscillate in the same direction as the wave's path. A wave of light may experience interference as well as diffraction as a result of these properties.
All of the remaining options are the light phenomenon.
Hence, options 2 and 3 are correct.
To learn more about the interference of waves refer to the link;
brainly.com/question/16098226
#SPJ1