Answer:
23 m/s downward
__________________________________________________________
<em>Taking the downward direction as positive</em>
<u>We are given:</u>
Initial velocity of the marble (u) = 0 m/s
Time interval (t) = 2.3 seconds
Final velocity (v) = x m/s
<u>Solving for the Final velocity:</u>
<u>Acceleration of the Marble:</u>
We know that gravity will make the marble accelerate at a constant acceleration of 10 m/s
<u>Final velocity:</u>
v = u + at [First equation of motion]
x = 0 + (10)(2.3) [replacing the given values]
x = 23 m/s
Hence, after 2.3 seconds, the marble will move at a velocity of 23 m/s in the downward direction
Answer:
9.6J+88.2J=97.8J
Explanation:
Here the velocity of the seagull is given,mass is given and its height.
We have to find its mechanical energy my friend.
Mechanical energy=kinetic energy + potential energy.
First we will find kinetic energy.
For calculating kinetic energy we need mass and velocity,which are given here.
So, Ek=
So by substituting the values we get 9.6J.
Now we find the potential energy which is mgh.
By substituting the values we get 88.2J.
Then we add both of those and get 97.8J
I hope this satisfies you and make sure you contact me if it doesn't
Answer:
3.6 m
Explanation:
Also
Therefore, the minimum distance L you can place a screen from the double slit that will give you an interference pattern on the screen that you can accurately measure using an ordinary 30 cm (12 in) ruler. = 3.6 m
Answer: The amount of energy consisted in the molecules determines the state of matter.
Explanation: