Answer:
i) angle of incidence;i = 29.43°
ii) δm = 38.92°
Explanation:
Prism is equilateral so angle of prism (A) = 60°
Refractive index of glass; n_glass = 1.52
A) Let's assume the incident angle = i and Critical angle = θc
We know that, sin θc = 1/n
Thus;
sin θc = 1/n_glass
θc = sin^(-1) (1/n_glass)
θc = sin^(-1) (1/1.52)
θc = 41.14°
Now, the angle of prism will be the sum of external angle that is critical angle and reflected angle.
Thus;
A = r + θc
r = A - θc
So;
r = 60° - 41. 14°
r = 18.86°
From, Snell's law. If we apply it to this question, we will have;
(sin i)/(sin r) = n_glass
Where;
i is angle of incidence and r is angle of reflection.
Let's make i the subject;
i = sin^(-1) (n_glass × sin r)
i = sin^(-1) (1.52 × sin 18.86)
i = sin^(-1) 0.4914
i = 29.43°
B) The formula to calculate minimum deviation would be from;
μ = [sin ((A + δm)/2)]/(sin A/2)
Where;
μ is Refractive index
δm is minimum angle of deviation
A is angle of prism
Now Refractive index is given by a formula; μ = (sin i)/(sin r)
So; μ = (sin 29.43)/(sin 18.86)
μ = 1.52
Thus;
1.52 = [sin ((60 + δm)/2)]/(sin 60/2)
1.52 * sin 30 = sin ((60 + δm)/2)
0.76 = sin ((60 + δm)/2)
sin^(-1) 0.76 = ((60 + δm)/2)
49.46 × 2 = (60 + δm)
98.92 - 60 = δm
δm = 38.92°