Answer:
Explanation:
The acceleration of an object is the rate of change of velocity of the object.
Mathematically, it is calculated as:
where
u is the initial velocity
v is the final velocity
t is the time taken for the velocity to change from u to v
Acceleration is a vector, so it is important to also take into account the direction of the velocity.
For the particle in this problem, we have:
u = +48 m/s is the initial velocity (positive direction)
v = -92 m/s is the final velocity (negative direction)
t = 4.5 s is the time interval
Therefore, the average acceleration is
Answer:
Difference in height = 7.5 cm
Explanation:
We are given;.
Height of ethyl alcohol;h2 = 20 cm = 0.2 m
Density of glycerin: ρ1 = 1260 kg/m³
Density of ethyl alcohol; ρ2 = 790 kg/m³
To get the difference in height, the pressure at the top of the open end must be equal to the pressure at the point where the liquids do not mix since both points will be at different levels after the pouring.
Thus;
P1 = P2
Formula for pressure is; P = ρgh
Thus;
ρ1 × g × h1 = ρ2 × g × h2
g will cancel out to give;
ρ1 × h1 = ρ2× h2
Making h1 the subject, we have;
h1 = (ρ2× h2)/ρ1
h1 = (790 × 0.2)/1260
h1 = 0.125 m
Difference in height will be;
Δh = h2 - h1
Δh = 0.2 - 0.125
Δh = 0.075 m = 7.5 cm
Answer:
0.2885 m/s²
Explanation:
The formula for centripetal acceleration is given as;
Given that;
speed = v = 1.5m/s
radius = r = 7.8
Let's take the analogy of the baseball pitcher a step farther. When a baseball is thrown in a straight line, we already said that the ball would fall to Earth because of gravity and atmospheric drag. Let's pretend again that there is no atmosphere, so there is no drag to slow the baseball down. Now, let's assume that the person throwing the ball throws it so fast that as the ball falls towards the Earth, it also travels so far, before falling even a little, that the Earth's surface curves away from the ball's path.
In other words, the baseball falls as it did before, but the ball is moving so fast that the curvature of the Earth becomes a factor and the Earth "falls away" from the ball. So, theoretically, if a pitcher on a 100 foot (30.48 m) high hill threw a ball straight and fast enough,the ball would circle the Earth at exactly 100 feet and hit the pitcher in the back of the head once it circled the globe! The bad news for the person throwing the ball is that the ball will be traveling at the same speed as when they threw it, which is about 8 km/s or several times faster than a rifle bullet. This would be very bad news if it came back and hit the pitcher, but we'll get to that in a minute.
Answer:
After pulses pass through each other, each pulse continues along its original direction of travel, and their original amplitudes remain unchanged.
Explanation:
Constructive interference takes place when two pulses meet each other to create a larger pulse.