Answer:
a. 86.80 m
b. i. The mass of the bob
ii. The length of the pendulum
Explanation:
a. Determine the height of the smokestack.
Using T = 2π√(L/g) where T = period of pendulum = 18.7 s, L = length of pendulum = height of smokestack and g = acceleration due to gravity = 9.8 m/s².
So, making L subject of the formula, we have
T = 2π√(L/g)
T/2π = √(L/g)
squaring both sides, we have
(T/2π)² = L/g
L = (T/2π)²g
Substituting the values of the variables into the equation, we have
L = (T/2π)²g
L = (18.7 s/2π)²(9.8 m/s²)
L = (2.976 s)²(9.8 m/s²)
L = 8.857 s² × 9.8 m/s²
L = 86.796 m
L ≅ 86.80 m
b. What factors influence the period of a simple pendulum
The factors that influence the period of a simple pendulum are
i. The mass of the bob
ii. The length of the pendulum
Answer:
d. The large pot of water and small cup of water have the same temperature, but the large pot of water has higher thermal energy.
Explanation:
Temperature is a measure of the average kinetic energy of individual molecules. While internal energy refers to the total kinetic energy of the molecules within the object. Since in this case we have the same amount of average kinetic energy, then the large pot of water and small cup of water have the same temperature. While the large pot of water has higher thermal energy, since has more water particles than the small cup.
The right answer is
all of the above
good luck
Answer:
The current of the solenoid is 0.0129 A.
Explanation:
The movement of the electron within the solenoid in a circle is produced by equaling the magnetic force and the centripetal force, as follows:
Where:
I: is the current
m: is the electron's mass = 9.1x10⁺³¹ kg
v: is the electron's speed = 3.0x10⁵ m/s
μ₀: is the permeability magnetic = 4πx10⁻⁷ T.m/A
n: is the number of turns per unit length = 35/cm
r: is the radius of the circle = 3.0 cm
e: is the electron's charge = 1.6x10⁻¹⁹ C
Therefore, the current of the solenoid is 0.0129 A.
I hope it helps you!