Time t = ?
<span>When wave is moving from
y = 0 to y =12 cm</span>
By using the formula,
y = 15cos [(π/12) t)] =
0,
cos [(π/12) t)] = 0 =
cos (π/2), so,
(π/12)t = π/2,
t = (π/2) (12/π)
t = 12/2
<span>t = 6 sec</span>
<span>so 6 sec is the least amount of time required</span>
Answer:
The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of an object's speed and direction of motion (e.g. 60 km/h to the north).
Explanation:
At critical temperature, the resistivity of the superconductor
B. It suddenly drops to zero
Explanation:
Materials can be classified into three different types depending on their resistance:
- Conductors: these materials have generally low resistance and allow electricity to pass through easily. The resistance of a conductor increases linearly with the temperature
- Insulators: these materials do not allow electricity to pass through - so they have very high resistance
- Semi-conductors: these are materials that are insulators are room temperature, however they becomes conductors when heated. Therefore, the resistance of a semiconductor decreases when the temperature increases
- Superconductors: these are special materials that are normally conductors; however, at very low temperatures (we are talking about temperature very near to 0 K), their resistance becomes suddenly zero.
Therefore, the correct answer is:
B. It suddenly drops to zero
Learn more about current and resistance:
brainly.com/question/4438943
brainly.com/question/10597501
brainly.com/question/12246020
#LearnwithBrainly
C......................................
F = ma
<span>where </span>
<span>F = frictional force </span>
<span>m = mass of the block = 1.4 kg (given) </span>
<span>a = acceleration of the block = 1.25 m/sec^2 (given) </span>
<span>Substituting values, </span>
<span>F = (1.4)(1.25) </span>
<span>F = 1.75 N </span>
<span>By definition, </span>
<span>F = (mu)(Normal force) </span>
<span>where </span>
<span>mu = coefficient of friction </span>
<span>Normal force = mg = 1.4*9.8 = 13.72 </span>
<span>Again, substituting appropriate values, </span>
<span>1.75 = mu(13.72) </span>
<span>mu = 0.128</span>