Answer:
An atom is a particle of matter that uniquely defines achemical element. An atom consists of a central nucleus that is usually surrounded by one or more electrons. Each electron is negatively charged. The nucleus is positively charged, and contains one or more relatively heavy particles known as protons and neutrons.
True, because if it wasn't a chemical reaction it would have proceeded to stay the same. but it begins to bubble.
sorry if this isn't the best answer I'm trying my best.
Elements of Group 1 and group 2 in the periodic
table contain elements so reactive that they are never found in the free state
<u>Explanation</u>:
The metals in group 1 of periodic table consisting of 'alkali metals' which include lithium, potassium, sodium, rubidium, Francium and caesium. They are highly reactive because they have low ionisation energy and larger radius. The group 2 metals consist of 'alkaline earth metals' which include calcium, strontium, barium, beryllium, radium and magnesium. These alkaline earth metal have +2 oxidation number, hence are highly reactive.
These both group metals are mostly reactive and so are never found in a free state. When they are exposed to air they would immediately react with oxygen. Hence, are stored in oils to avoid oxidation.
Answer:
A) Separating funnel method
B) Simple Distillation
C) Evaporation
D) Sublimation
E) It is based on the principle of separation whereby even though two substances are dissolved in the same solvent, their respective solubilities could be different. Thus, the component that has more solubility will rise fastest and will therefore get separated from the mixture.
Explanation:
A)
B) Kerosene and petrol are both miscible liquids and the difference in their boiling point temperature is not more than 25°C. Thus, we make use of Simple distillation.
C) Can be separated by evaporation where the water is boiled and it evaporates and leaves the salt behind
D) To separate camphor from salt, we use sublimation so the camphor can change directly from solid to the gas state without passing through the liquid state.
E) Chromatography is used to separate components of a mixture.
It is based on the principle of separation whereby even though two substances are dissolved in the same solvent, their respective solubilities could be different. Thus, the component that has more solubility will rise fastest and will therefore get separated from the mixture.
Answer:
(a) sp³ sp³
H₃<u>C</u> - <u>C</u>H₃
(b) sp³ sp²
H₃<u>C</u> - <u>C</u>H = <u>C</u>H₂
sp²
(c) sp³ sp
H₃<u>C</u> - <u>C</u> ≡ <u>C</u> - <u>C</u>H₂OH
sp sp³
(d) sp³ sp²
H₃<u>C</u> - <u>C</u>H=O
Explanation:
Alkanes or the carbons with all the single bonds are sp³ hybridized.
Alkenes or the carbons with double bond(s) are sp² hybridized.
Alkynes or the carbons with triple bond are sp hybridized.
Considering:
(a) H₃C-CH₃ , Both the carbons are bonded by single bond so both the carbons are sp³ hybridized.
Hence,
sp³ sp³
H₃<u>C</u> - <u>C</u>H₃
(b) H₃C-CH=CH₂ , The carbon of the methyl group is sp³ hybridized as it is boned via single bonds. The rest 2 carbons are sp² hybridized because they are bonded by double bond.
Hence,
sp³ sp²
H₃<u>C</u> - <u>C</u>H = <u>C</u>H₂
sp²
(c) H₃C-C≡C-CH₂OH , The carbons of the methyl group and alcoholic group are sp³ hybridized as it is boned via single bonds. The rest 2 carbons are sp hybridized because they are bonded by triple bond.
Hence,
sp³ sp
H₃<u>C</u> - <u>C</u> ≡ <u>C</u> - <u>C</u>H₂OH
sp sp³
(d)CH₃CH=O, The carbon of the methyl group is sp³ hybridized as it is boned via single bonds. The other carbon is sp² hybridized because it is bonded by double bond to oxygen.
Hence,
sp³ sp²
H₃<u>C</u> - <u>C</u>H=O