O B. The total mass of the reactants equals the total mass of the
products.
Answer:
1. acid
2. neutral
3. acid
4. base
5. acid
6. base
7. neutral
8. acid
9. base
10. base
Explanation:
I'm not 100 percent positive about number three but the rest I believe are correct
Answer:
When writing equation the mass on left side of equation must be equal to the mass on right side. True
Explanation:
The chemical reactions always follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
For example:
In photosynthesis reaction:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass because total mass is equal on both side of equation.
The answer for the following problem is described below.
<em><u> Therefore the standard enthalpy of combustion is -2800 kJ</u></em>
Explanation:
Given:
enthalpy of combustion of glucose(Δ of ) =-1275.0
enthalpy of combustion of oxygen(Δ of ) = zero
enthalpy of combustion of carbon dioxide(Δ of ) = -393.5
enthalpy of combustion of water(Δ of ) = -285.8
To solve :
standard enthalpy of combustion
We know;
Δ = ∈Δ (products) - ∈Δ (reactants)
(s) +6 (g) → 6 (g)+ 6 (l)
Δ = [6 (-393.5) + 6(-285.8)] - [6 (0) + (-1275)]
Δ = [6 (-393.5) + 6(-285.8)] - [0 - 1275]
Δ = 6 (-393.5) + 6(-285.8) - 0 + 1275
Δ = -2361 - 1714 - 0 + 1275
Δ =-2800 kJ
<em><u> Therefore the standard enthalpy of combustion is -2800 kJ</u></em>
Reactant molecules collide more frequently and with greater energy per collision