Answer:
The slope of a position-time graph represents an object’s velocity.
Explanation:
In a position-time graph, the values on the x-axis represent the time, while the values on the y-axis represent the position of the object.
Velocity is defined as the ratio between the displacement of an object and the time taken:
However, we can see that this definition corresponds to the slope of the curve in a position-time graph. In fact:
, the displacement, corresponds to the difference in position, so the difference between the values on the y-axis:
, the time interval, corresponds to the difference in times, so the difference between the values on the x-axis:
So, the velocity is
which corresponds to the slope of the curve.
Closer to the sun . . . orbital speed is faster.
Farther from the sun . . . orbital speed is slower.
Flag answer: Answer 13 Answer 13
The hypothesis because its very hard to make and it confounds me
Answer:
θ_p = 53.0º
Explanation:
For reflection polarization occurs when a beam is reflected at the interface between two means, the polarization in total when the angle between the reflected and the transmitted beam is 90º
Let's write the transmission equation
n1 sin θ₁ = ne sin θ₂
The angle to normal (vertcal) is
180 = θ2 + 90 + θ_p
θ₂ = 90 - θ_p
Where θ₂ is the angle of the transmitted ray θ_p is the angle of the reflected polarized ray
We replace
n1 sin θ_p = n2 sin (90 - θ_p)
Let's use the trigonometry relationship
Sin (90- θ_p) = sin 90 cos θ_p - cos 90 sin θ_p = cos θ_p
In the law of reflection incident angle equals reflected angle,
ni sin θ_p = ns cos θ_p
n₂ / n₁ = sin θ_p / cos θ_p
n₂ / n₁ = tan θ_p
θ_p = tan⁻¹ (n₂ / n₁)
Now we can calculate it
The refractive index of air is 1 (n1 = 1) the refractive index of seawater varies between 1.33 and 1.40 depending on the amount of salts dissolved in the water
n₂ = 1.33
θ_p = tan⁻¹ (1.33 / 1)
θ_p = 53.0º
n₂ = 1.40
θ_p = tan⁻¹ (1.40 / 1)
Tep = 54.5º