Answer:
General Expression: E = kql/(l² + r²)^(3/2)
(a) 6.3 MN/C
(b) 22.8 MN/C
(c) 6.1 MN/C
(d) 0.63 MN/C
Explanation:
The general expression for electric field along axis of a uniformly charged ring is:
<u>E = kqL/(L² + r²)^(3/2)</u>
where,
E = Electric Field Strength = ?
k = Coulomb's Constant = 9 x 10⁹ N.m²/C²
q = Total Charge = 71 μC = 71 x 10⁻⁶ C
L = Distance from center on axis
r = radius of ring = 10 cm = 0.1 m
(a)
L = 1 cm = 0.01 m
Therefore,
E = (9 x 10⁹ N.m²/C²)(71 x 10⁻⁶ C)(0.01 m)/[(0.01 m)² + (0.1 m)²]^(3/2)
E = (6390 N.m³/C)/(0.00101 m³)
<u>E = 6.3 x 10⁶ N/C = 6.3 MN/C</u>
<u></u>
(b)
L = 5 cm = 0.05 m
Therefore,
E = (9 x 10⁹ N.m²/C²)(71 x 10⁻⁶ C)(0.05 m)/[(0.05 m)² + (0.1 m)²]^(3/2)
E = (31950 N.m³/C)/(0.00139 m³)
<u>E = 22.8 x 10⁶ N/C = 27.4 MN/C</u>
<u></u>
(c)
L = 30 cm = 0.3 m
Therefore,
E = (9 x 10⁹ N.m²/C²)(71 x 10⁻⁶ C)(0.3 m)/[(0.3 m)² + (0.1 m)²]^(3/2)
E = (191700 N.m³/C)/(0.03162 m³)
<u>E = 6.1 x 10⁶ N/C = 6.1 MN/C</u>
<u></u>
(d)
L = 100 cm = 1 m
Therefore,
E = (9 x 10⁹ N.m²/C²)(71 x 10⁻⁶ C)(1 m)/[(1 m)² + (0.1 m)²]^(3/2)
E = (639000 N.m³/C)/(1.015 m³)
<u>E = 0.63 x 10⁶ N/C = 0.63 MN/C</u>