I think the best answer is C. Since the light energy would be the sun and chemical energy being the glucose that feeds the plant.
Answer:
1.40 atm is the pressure for the gas
Explanation:
An easy problem to solve with the Ideal Gases Law:
P . V = n . R .T
T° = 370K
V = 17.3L
n = 0.8 mol
Let's replace data → P . 17.3L = 0.8mol . 0.082L.atm/mol.K . 370K
P = (0.8mol . 0.082L.atm/mol.K . 370K) / 17.3L = 1.40 atm
Answer:
143 parts I think probably not
Answer: -
IE 1 for X = 801
Here X is told to be in the third period.
So n = 3 for X.
For 1st ionization energy the expression is
IE1 = 13.6 x Z ^2 / n^2
Where Z =atomic number.
Thus Z =( n^2 x IE 1 / 13.6)^(1/2)
Z = ( 3^2 x 801 / 13.6 )^ (1/2)
= 23
Number of electrons = Z = 23
Nearest noble gas = Argon
Argon atomic number = 18
Number of extra electrons = 23 – 18 = 5
a) Electronic Configuration= [Ar] 3d34s2
We know that more the value of atomic radii, lower the force of attraction on the electrons by the nucleus and thus lower the first ionization energy.
So more the first ionization energy, less is the atomic radius.
X has more IE1 than Y.
b) So the atomic radius of X is lesser than that of Y.
c) After the first ionization, the atom is no longer electrically neutral. There is an extra proton in the atom.
Due to this the remaining electrons are more strongly pulled inside than before ionization. Hence after ionization, the radii of Y decreases.