Answer:
T = 188.5 s, correct is C
Explanation:
This problem must be worked on using conservation of angular momentum. We define the system as formed by the fan and the paper, as the system is isolated, the moment is conserved
initial instant. Before the crash
L₀ = r m v₀ + I₀ w₀
the angular speed of the fan is zero w₀ = 0
final instant. After the crash
L_f = I₀ w + m r v
L₀ = L_f
m r v₀ = I₀ w + m r v
angular and linear velocity are related
v = r w
w = v / r
m r v₀ = I₀ v / r + m r v
m r v₀ = (I₀ / r + mr) v
v =
let's calculate
v =
v =
v = 0.02 m / s
To calculate the time of a complete revolution we can use the kinematics relations of uniform motion
v = x / T
T = x / v
the distance of a circle with radius r = 0.6 m
x = 2π r
we substitute
T = 2π r / v
let's calculate
T = 2π 0.6/0.02
T = 188.5 s
reduce
t = 188.5 s ( 1 min/60 s) = 3.13 min
correct is C
Work formula:
F = 50N, d = 1.0 m
When you lift something straight up, the angle of the force is 90º
cos(90º) is 0, so there's no work done when you lift the microwave off the ground
F = 50N, d = 1.0 m
When you push the microwave, the angle is 0º and cos(0º) is 1. So there is work done here:
total work = 50 joules
Answer:
I BELIEVE THE ANSWER A I REMEMBER THAT QUESTION WHEN I DID IT SO THATS THE BEST ONE OUT OF THE 3
Explanation:
Answer:
Explanation:
As the dielectric is inserted between the plates of a capacitor, the capacitance becomes K times and the electric field between the plates becomes 1 / K times the original value. Where, K be the dielectric constant.
Electric pumps are not useful they clog