Answer:
V = 0.248 L
Explanation:
To do this, use the following equation:
P1*V1/T1 = P2*V2/T2
This equation is used to find a relation between two differents conditions of a same gas, which is this case. From this equation we can solve for V2.
Solving for V2:
V2 = P1*V1*T2/T1*P2
Temperature must be at Kelvin, so, we have to sum the temperature 273 to convert it in K.
Replacing the data we have:
V2 = 1 * 4.91 * (-196+273) / 5.2 * (20+273)
V2 = 378.07 / 1523.6
V2 = 0.248 L
By
vector addition.
In fact, velocity is a vector, with a magnitude intensity, a direction and a verse, so we can't simply do an algebraic sum of the two (or more velocities).
First we need to decompose each velocity on both x- and y-axis (if we are on a 2D-plane), then we should do the algebraic sum of all the components on the x- axis and of all the components on the y-axis, to find the resultants on x- and y-axis. And finally, the magnitude of the resultant will be given by
where Rx and Rx are the resultants on x- and y-axis. The direction of the resultant will be given by
where
is its direction with respect to the x-axis.
Answer:
Lol, you should do Nate, Bobby, Cindy, Joe, and Beth
Jk, if you want to be series and probably not fail go for these:
If it wants types of small/average stars, then go with
Small star names:
OGLE-TR-122B
Gliese 229 B
TRAPPIST-1
Teegarden's Star
Luyten 726-8 (A and B)
Proxima Centauri
Wolf 359 111400
Ross 248
Barnard's Star
CM Draconis B
Ross 154 167000
CM Draconis A
Kapteyn's Star
The deceleration experienced by the gymnast is the 9 times of the acceleration due to gravity.
Now from Newton`s first law, the net force on gymnast,
Here, W is the weight of the gymnast and a is the acceleration experienced by the gymnast ( acceleration due to gravity)
Therefore,
OR
Given and
Substituting these values in above formula and calculate the force exerted by the gymnast,
Answer:
None
Explanation:
Subatomic particles are the particles which are very smaller than the atoms. Elementary particles are the examples of subatomic particles.
Elementary particles are the particles without any sub-structure which means they are not composed of other particles.
The elementary particles are classified into three categories which are discussed below:
(1) Quarks: up, down, top, bottom, strange, and charm.
(2) Leptons: muon, muon neutrino, electrons, electron neutrino, tau, tau neutrino.
(3) Bosons: Z bosons, W bosons, Higgs, Gluon, photons.
Mesons are the particles which compose one quark and one anti quarks.
Therefore, in the given list there is no meson.