This is the same question that I just answered.
Have present the definition of acceleration:
a = Δv / Δt, this is change in velocity per unit of time.
a and v are in bold to mean that they are vectors.
1) a body traveling in a straight line and increasing in speed: CORRECT:
Acceleration is the change in velocity, either magnitude or direction or both. So, a body increasing in speed is accelerated.
2) a body traveling in a straight line and decreasing in speed: CORRECT
A decrease in speed is a change in velocity, so it means acceleration.
3) a body traveling in a straight line at constant speed: FALSE.
That body is not changing either direction or speed so its motion is not accelerated but uniform.
4) a body standing still : FALSE.
That body is not changind either direction or speed.
5) a body traveling at a constant speed and changing direction: CORRECT.
The change in direction means that the body is accelerated. The acceleration due to change in direction is named centripetal acceleration.
Answer:
Trophosphere
Explanation:
The troposphere is the atmospheric layer closest to the planet and is characterized because contains the largest percentage of the mass of the total atmosphere.
On special characteristic is that in this layer the temperature and water vapor content decrease a lot respect to the altitude. Also on this layer the Water vapor is important in order to regulate the air temperature since on this zone we have absorption of the solar energy.
The troposphere contains almost all the water vapor in the atmosphere. And specially on the tropics we have an accumulation of the water vapour.
All weather phenomena occur within the troposphere. Tropos means "change" and Troposphere means "region of mixing".
Above this layer, we have the tropopause, ranges in height from 5 miles near the poles up to 11 miles above the equator. And the height depends of the seasons, with an special characteristic: the is highest height occurs in the summer and lowest height occurs in the winter.
The troposphere contains almost 75% of the mass of the entire atmosphere. The air on this layer is composed by 78% nitrogen, 21% oxygen and 1% is made of argon, water vapor, and carbon dioxide.
So for this reason this is the Region that contains the majority of molecules in the atmosphere.
Answer:
(a). The average daily demand of this subdivision is 2444.44 gallon/min.
(b). The design-demand used to design the distribution system is 2444.44 gallon/min.
Explanation:
Given that,
Area = 1100 acres
Number of house in 1 acres = 4
Per house water demand = 800 g/day/house
(a). We need to calculate the average daily demand of this subdivision
Using formula for average daily demand
The average daily demand of this subdivision is 2444.44 gallon/min.
(b). We need to calculate the design-demand used to design the distribution system
Using formula for the design-demand
Hence, (a). The average daily demand of this subdivision is 2444.44 gallon/min.
(b). The design-demand used to design the distribution system is 2444.44 gallon/min.
Answer:
The target was higher than the cannon
Explanation:
Given that a cannon ball is launched with initial speed 56 m/s, and hits a target at speed 35 m/s.
The initial velocity must be 56 m/s, while the final velocity will be 35 m/s.
When an object is thrown upward with an initial velocity, the object continues to move upwards with decreasing in magnitude of velocity till it reaches the maximum height where the final velocity will be equal to zero.
In this question, since the final velocity is less than the initial velocity, we can conclude that the target is higher.
Therefore, the target was higher than the cannon.
Answer:
(a) 2.45×10⁵ N/m
(b) 0.204 m
Explanation:
Here we have that to have a velocity of 2.25 m/s then the relationship between the elastic potential energy of the spring and the kinetic energy of the rocket must be
Elastic potential energy of the spring = Kinetic energy of the rocket
Where:
k = Force constant of the spring
x = Extension of the spring
m = Mass of the rocket
v = Velocity of the rocket
Therefore,
or
(b) Since the maximum acceleration is given as 5.00×g we have
Maximum acceleration = 5.00 × 9.81 = 49.05 m/s²
Hence the force on the rocket is then;
Force = m×a = 1020 × 49.05 = 50,031 N
Therefore,
(a) From which
or
Force constant of the spring, k = 2.45×10⁵ N/m.