Heat supplied to the gold will raise the temperature of the gold from 20 degree Celsius to 90 degree Celsius.
Mass of the gold (m) = 0.072 kg
Temperature change (ΔT) = 90 - 20 = 70 degree Celsius
Specific heat capacity of the gold (c) = 136 J/kg C
Heat supplied = m × c × ΔT
Heat supplied = 0.072 × 136 × 70
Heat supplied = 685.44 Joules
Hence, the heat supplied to the gold to raise the temperature from 20 degree Celsius to 90 degree Celsius = 685.44 Joules
1 kg ball can have more kinetic energy than a 100 kg ball as increase in velocity is having greater impact on K.E than increase in mass.
<u>Explanation</u>:
We know kinetic energy can be judged or calculated by two parameters only which is mass and velocity. As kinetic energy is directly proportional to the and increase in velocity leads to greater effect on translational Kinetic Energy. Here formula of Kinetic Energy suggests that doubling the mass will double its K.E but doubling velocity will quadruple its velocity:
Better understood from numerical example as given:
If a man A having weight 50 kg run with speed 5 m/s and another man B having 100 kg weight run with 2.5 m / s. Which man will have more K.E?
This can be solved as follows:
It shows that man A will have more K.E.
Hence 1 kg ball can have more K.E than 100 kg ball by doubling velocity.
This is a statement not a question .
Answer:
10 watts
Explanation:
first calculate work.
Work =force×distance cos thita
10Kg×0.50M cos 0= 5joules
Therefore, Power=Work÷ Time
Therefore, 5joules÷0.50s=10 watts.
False
Because you can see using a thermal camera I guess