Answer:
in greek atom means uncuttable
Answer:
Explanation:
a = F / m
where a is acceleration , F is thrust and m is mass
taking log and differentiating
da / a = dF / F - dm / m
(da / a)x 100 = (dF / F)x100 - (dm / m) x100
percentage increase in a = percentage increase in F - percentage increase in m
= percentage increase in acceleration a = 39 - 13 = 26 %
required increase = 26 %.
Answer:
Plate A
Explanation: It has the continent of North America inside of it.
Answer:
Option A is correct.
Eddies due to enhanced mixing of fluid
Explanation:
Turbulent thermal conductivity is thermal conductivity that arises from the turbulent flow of fluids. It comes into play when a particukar fluid moves into turbulent regiom of flow where flow is no longer orderly and streamlines aren't discernable with the fluid layers all warping into one another forming vortices.
It is represented as K and is shown mathematically through the heat flux at turbulent flow
q = vCρT' = - K (∂T/∂y)
where
K = turbulent thermal conductivity
T' = the eddy temperature relative to the mean value,
C = Heat capacity the fluid
q = the rate of thermal energy transport by turbulent eddies.
The physical mechanism that cause turbulent thermal conductivity are similar to the causes of turbulent flow of fluids.
This includes sharp changes in fluid pressure and velocity of flow which is evident in eddies that come about in the enhanced mixing of fluids.
Hope this Helps!!!
Answer:
14 m/s
Explanation:
We can solve the problem by using the law of conservation of energy.
At the beginning, when the ball is thrown from the ground, it has only kinetic energy, which is given by
where m = 5.9 kg is the mass of the ball and v is its initial speed.
As the ball goes up, its speed decreases, so its kinetic energy decreases and converts into gravitational potential energy. When the ball reaches its maximum height, the speed has become zero, and all the kinetic energy has been converted into gravitational potential energy, given by:
where g = 9.8 m/s^2 is the gravitational acceleration and h = 10 m is the maximum height reached by the ball.
Since we can ignore air resistance, energy must be conserved, so the initial kinetic energy must be equal to the final potential energy of the ball, so we can write:
And we can solve the equation to find v, the initial speed of the ball: