Answer:
-611.32 N/C
0.43723 m
Explanation:
k = Coulomb constant =
q = Charge = -4.25 nC
r = Distance from particle = 0.25 m
Electric field is given by
The magnitude is 611.32 N/C
The electric field will point straight down as the sign is negative towards the particle.
The distance from the electric field is 1.71436 m
Answer:
Explanation:
The application of Gauss's law is used in the derivation as shown with detailed step by step in the attached file.
The potential difference on this spherical capacitor is ΔV = Va - Vb = kQ/a - kQ/b = kQ(1/a - 1/b)
<span>Answer:
So this involves right triangles. The height is always 100. Let the horizontal be x and the length of string be z.
So we have x2 + 1002 = z2. Now take its derivative in terms of time to get
2x(dx/dt) = 2z(dz/dt)
So at your specific moment z = 200, x = 100âš3 and dx/dt = +8
substituting, that makes dz/dt = 800âš3 / 200 or 4âš3.
Part 2
sin a = 100/z = 100 z-1 . Now take the derivative in terms of t to get
cos a (da./dt) = -100/ z2 (dz/dt)
So we know z = 200, which makes this a 30-60-90 triangle, therefore a=30 degrees or π/6 radians.
Substitute to get
cos (Ď€/6)(da/dt) = (-100/ 40000)(4âš3)
âš3 / 2 (da/dt) = -âš3 / 100
da/dt = -1/50 radians</span>
Answer:
281 K
Explanation:
Charles's Law. V1/T1 = V2/T2.
The temperature must be in K = 21.6°C + 273 = 294.6K.
V1T2 = V2T1.
3.62L x T2 = 3.45L x 294.6K
T2 = (3.45 x 294.6) / 3.62 = 1016.4 / 3.62 = B): 281K.
(By direct proportion of volume change: (3.45L / 3.62L) x 294.6K = 281K).