Hydrogen, Nitrogen, Flourine, Oxygen, Iodine, Chlorine, Iodine, and Bromine.
<span>John Dalton introduced a theory proposing that elements vary because of the mass of their atoms.
He said in his theory that all matter is made up of indivisible blocks called atoms. He also stipulated in his theory that elements are identical thus, have different sizes and masses.
Dalton's theory was different from Niels Bohr who proposed a new atomic model which was also commonly known as the modern atomic theory. Bohr's theory says that atoms are arranged in circular orbits around the nucleus. He patterned his model as the solar system.
</span>
Freezing point depression depends of the number of particles of the solute in the solution.
1)Pure water have highest freezing point. All other solutions with given solutes will have lower temperatures.
2) The more particles of the solute in the solution the lower freezing point is going to be.
<span>b. 1.0 m NaCl ( dissociates and give 2 mol ions (1 mol Na⁺ and 1 mol Cl⁻))
c. 1.0 m K3PO4 (</span>dissociates and give 4 mol ions (3 mol K⁺ and 1 mol PO4³⁻)<span>
d. 1.0 m CaCl2 (</span>dissociates and give 3 mol ions (1 mol Ca²⁺ and 2 mol Cl⁻))<span>
e. 1.0 m glucose (c6h12o6) (glucose does not dissociate, and solution have
1 mole of particles of the solute(glucose))
The largest number of particles has </span>1.0 m K3PO4 solution, and it is has lowest freezing point . Answer is C.
You need to use the formula--> P1V1= P2V2 (Boyles's law)
P1= 14 bar
V1= 312 mL
P2= ?
V2= 652 mL
now we plug the values into the formula.
(14 x 312) = (P2x 652)
P2= (14 x 312)/ 652= <span>6.70 bar</span>
Answer:
7.32 g of F₂
Solution:
The equation is as follow,
2 LiI + F₂ → 2 LiF + I₂
According to equation,
51.88 g (2 mole) of LiF is produced from = 37.99 g (1 mole) F₂
So,
10 g of LiF will be produced by = X g of F₂
Solving for X,
X = (10 g × 37.99 g) ÷ 51.88 g
X = 7.32 g of F₂